The Integration of a Canonical Workflow Framework with an Informatics System for Disease Area Research

Author:

Navale Vivek1,McAuliffe Matthew1

Affiliation:

1. Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA

Abstract

Abstract A recurring pattern of access to existing databases, data analyses, formulation of new hypotheses, use of an experimental design, institutional review board approvals, data collection, curation, and storage within trusted digital repositories is observable during clinical research work. The workflows that support the repeated nature of these activities can be ascribed as a Canonical Workflow Framework for Research (CWFR). Disease area clinical research is protocol specific, and during data collection, the electronic case report forms can use Common Data Elements (CDEs) that have precisely defined questions and are associated with the specified value(s) as responses. The CDE-based CWFR is integrated with a biomedical research informatics computing system, which consists of a complete stack of technical layers including the Protocol and Form Research Management System. The unique data dictionaries associated with the CWFR for Traumatic Brain Injury and Parkinson's Disease resulted in the development of the Federal Interagency Traumatic Brain Injury and Parkinson's Disease Biomarker systems. Due to a canonical workflow, these two systems can use similar tools, applications, and service modules to create findable, accessible, interoperable, and reusable Digital Objects. The Digital Objects for Traumatic Brain Injury and Parkinson's disease contain all relevant information needed from the time data is collected, validated, and maintained within a Storage Repository for future access. All Traumatic Brain Injury and Parkinson's Disease studies can be shared as Research Objects that can be produced by aggregating related resources as information packages and is findable on the Internet by using unique identifiers. Overall, the integration of CWFR with an informatics system has resulted in the reuse of software applications for several National Institutes of Health-supported biomedical research programs.

Publisher

MIT Press - Journals

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference26 articles.

1. An overview of biomedical platforms for managing research data;Navale;Journal of Data, Information and Management,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3