A Knowledge Graph-Based Deep Learning Framework for Efficient Content Similarity Search of Sustainable Development Goals Data

Author:

Kilanioti Irene1,A. Papadopoulos George2

Affiliation:

1. School of Electrical and Computer Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus Athens 157 80, Greece

2. Department of Computer Science, University of Cyprus, 1 University Avenue, Aglantzia, CY-2109, Nicosia, Cyprus

Abstract

ABSTRACT Sustainable development denotes the enhancement of living standards in the present without compromising future generations’ resources. Sustainable Development Goals (SDGs) quantify the accomplishment of sustainable development and pave the way for a world worth living in for future generations. Scholars can contribute to the achievement of the SDGs by guiding the actions of practitioners based on the analysis of SDG data, as intended by this work. We propose a framework of algorithms based on dimensionality reduction methods with the use of Hilbert Space Filling Curves (HSFCs) in order to semantically cluster new uncategorised SDG data and novel indicators, and efficiently place them in the environment of a distributed knowledge graph store. First, a framework of algorithms for insertion of new indicators and projection on the HSFC curve based on their transformer-based similarity assessment, for retrieval of indicators and load-balancing along with an approach for data classification of entrant-indicators is described. Then, a thorough case study in a distributed knowledge graph environment experimentally evaluates our framework. The results are presented and discussed in light of theory along with the actual impact that can have for practitioners analysing SDG data, including intergovernmental organizations, government agencies and social welfare organizations. Our approach empowers SDG knowledge graphs for causal analysis, inference, and manifold interpretations of the societal implications of SDG-related actions, as data are accessed in reduced retrieval times. It facilitates quicker measurement of influence of users and communities on specific goals and serves for faster distributed knowledge matching, as semantic cohesion of data is preserved.

Publisher

MIT Press

Subject

Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems

Reference28 articles.

1. the power of data to advance the sdgs. mappingresearch for the sustainable development goals,2020

2. An efficient storage scheme for sustainable development goals data over distributed knowledge graph stores;Kilanioti,2022

3. Teaching a serious game for the sustainable development goals in the scratch programming tool;Kilanioti;European Journal of Engineering and Technology Research, Special Issue of 14th Conference of Informatics in Education CIE, Nov 2022,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3