Canonical Workflows in Simulation-based Climate Sciences

Author:

Anders Ivonne1,Gehlen Karsten Peters-von1,Thiemann Hannes1

Affiliation:

1. German Climate Computing Center (DKRZ), Bundesstraße 45a, D-20146 Hamburg, Germany

Abstract

Abstract In this paper we present the derivation of Canonical Workflow Modules from current workflows in simulation-based climate science in support of the elaboration of a corresponding framework for simulation-based research. We first identified the different users and user groups in simulation-based climate science based on their reasons for using the resources provided at the German Climate Computing Center (DKRZ). What is special about this is that the DKRZ provides the climate science community with resources like high performance computing (HPC), data storage and specialised services, and hosts the World Data Center for Climate (WDCC). Therefore, users can perform their entire research workflows up to the publication of the data on the same infrastructure. Our analysis shows, that the resources are used by two primary user types: those who require the HPC-system to perform resource intensive simulations to subsequently analyse them and those who reuse, build-on and analyse existing data. We then further subdivided these top-level user categories based on their specific goals and analysed their typical, idealised workflows applied to achieve the respective project goals. We find that due to the subdivision and further granulation of the user groups, the workflows show apparent differences. Nevertheless, similar “Canonical Workflow Modules” can be clearly made out. These modules are “Data and Software (Re)use”, “Compute”, “Data and Software Storing”, “Data and Software Publication”, “Generating Knowledge” and in their entirety form the basis for a Canonical Workflow Framework for Research (CWFR). It is desirable that parts of the workflows in a CWFR act as FDOs, but we view this aspect critically. Also, we reflect on the question whether the derivation of Canonical Workflow modules from the analysis of current user behaviour still holds for future systems and work processes.

Publisher

MIT Press - Journals

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. End-to-End Workflows for Climate Science: Integrating HPC Simulations, Big Data Processing, and Machine Learning;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

2. Data Management for PalMod-II – A FAIR-Based Strategy for Data Handling in Large Climate Modeling Projects;Data Science Journal;2023

3. Facing the Challenges in simulation-based Earth System Sciences and the Role of FAIR Digital Objects;Research Ideas and Outcomes;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3