Leveraging Continuous Prompt for Few-Shot Named Entity Recognition in Electric Power Domain with Meta-Learning

Author:

Yu Yang,He Wei,Kang Yu-meng,Ji You-lang

Abstract

ABSTRACT Conventional named entity recognition methods usually assume that the model can be trained with sufficient annotated data to obtain good recognition results. However, in Chinese named entity recognition in the electric power domain, existing methods still face the challenges of lack of annotated data and new entities of unseen types. To address these challenges, this paper proposes a meta-learning-based continuous cue adjustment method. A generative pre-trained language model is used so that it does not change its own model structure when dealing with new entity types. To guide the pre-trained model to make full use of its own latent knowledge, a vector of learnable parameters is set as a cue to compensate for the lack of training data. In order to further improve the model's few-shot learning capability, a meta-learning strategy is used to train the model. Experimental results show that the proposed approach achieves the best results in a few-shot electric Chinese power named entity recognition dataset compared to several traditional named entity approaches.

Publisher

MIT Press

Subject

Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Verification and Modification Method for Protection Settings of Ultra-high Voltage Converter Stations;2023 3rd International Conference on New Energy and Power Engineering (ICNEPE);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3