Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection

Author:

Bao Wei1,Dong Jian12,Xu Yang1,Yang Yuanyuan3,Qi Xiaoke4

Affiliation:

1. China Electronics Standardization Institute, Beijing 100007, China

2. Beihang University, Beijing 100191, China

3. Bohai University, Jinzhou 121013, China

4. School of Information Management for Law, China University of Political Science and Law, Beijing 102249, China

Abstract

Abstract Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training. This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts, particularly in the realm of semantic rewriting and translation-based plagiarism detection. In this paper, we present an enhanced attentive Siamese Long Short-Term Memory (LSTM) network designed for Tibetan-Chinese plagiarism detection. Our approach begins with the introduction of translation-based data augmentation, aimed at expanding the bilingual training dataset. Subsequently, we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency. Finally, we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection. We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework.

Publisher

MIT Press

Subject

Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3