The Specimen Data Refinery: A Canonical Workflow Framework and FAIR Digital Object Approach to Speeding up Digital Mobilisation of Natural History Collections

Author:

Hardisty Alex1,Brack Paul2,Goble Carole2,Livermore Laurence3,Scott Ben3,Groom Quentin4,Owen Stuart2,Soiland-Reyes Stian25

Affiliation:

1. School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK

2. The Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK

3. The Natural History Museum, London SW7 5BD, UK

4. Meise Botanic Garden, 1860 Meise, Belgium

5. Informatics Institute, Faculty of Science, University of Amsterdam, 1090 GH Amsterdam, The Netherlands

Abstract

AbstractA key limiting factor in organising and using information from physical specimens curated in natural science collections is making that information computable, with institutional digitization tending to focus more on imaging the specimens themselves than on efficiently capturing computable data about them. Label data are traditionally manually transcribed today with high cost and low throughput, rendering such a task constrained for many collection-holding institutions at current funding levels. We show how computer vision, optical character recognition, handwriting recognition, named entity recognition and language translation technologies can be implemented into canonical workflow component libraries with findable, accessible, interoperable, and reusable (FAIR) characteristics. These libraries are being developed in a cloud-based workflow platform—the ‘Specimen Data Refinery’ (SDR)—founded on Galaxy workflow engine, Common Workflow Language, Research Object Crates (RO-Crate) and WorkflowHub technologies. The SDR can be applied to specimens’ labels and other artefacts, offering the prospect of greatly accelerated and more accurate data capture in computable form. Two kinds of FAIR Digital Objects (FDO) are created by packaging outputs of SDR workflows and workflow components as digital objects with metadata, a persistent identifier, and a specific type definition. The first kind of FDO are computable Digital Specimen (DS) objects that can be consumed/produced by workflows, and other applications. A single DS is the input data structure submitted to a workflow that is modified by each workflow component in turn to produce a refined DS at the end. The Specimen Data Refinery provides a library of such components that can be used individually, or in series. To cofunction, each library component describes the fields it requires from the DS and the fields it will in turn populate or enrich. The second kind of FDO, RO-Crates gather and archive the diverse set of digital and real-world resources, configurations, and actions (the provenance) contributing to a unit of research work, allowing that work to be faithfully recorded and reproduced. Here we describe the Specimen Data Refinery with its motivating requirements, focusing on what is essential in the creation of canonical workflow component libraries and its conformance with the requirements of an emerging FDO Core Specification being developed by the FDO Forum.

Publisher

MIT Press

Subject

Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems

Reference64 articles.

1. Landscape analysis for the specimen data refinery;Walton;Research Ideas and Outcomes,2020

2. The history and impact of digitization and digital data mobilization on biodiversity research;Nelson;Philosophical Transactions of the Royal Society B: Biological Sciences,2019

3. DiSSCo, iDigBio and the future of global collaboration;Nelson;Biodiversity Information Science and Standards,2019

4. DiSSCo as a new regional model for scientific collections in Europe;Addink;Biodiversity Information Science and Standards,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3