Position Information in Transformers: An Overview

Author:

Dufter Philipp1,Schmitt Martin2,Schütze Hinrich3

Affiliation:

1. Center for Information and Language Processing, LMU Munich. philipp@cis.lmu.de

2. Center for Information and Language Processing, LMU Munich. martin@cis.lmu.de

3. Center for Information and Language Processing, LMU Munich. inquiries@cislmu.org

Abstract

Abstract Transformers are arguably the main workhorse in recent natural language processing research. By definition, a Transformer is invariant with respect to reordering of the input. However, language is inherently sequential and word order is essential to the semantics and syntax of an utterance. In this article, we provide an overview and theoretical comparison of existing methods to incorporate position information into Transformer models. The objectives of this survey are to (1) showcase that position information in Transformer is a vibrant and extensive research area; (2) enable the reader to compare existing methods by providing a unified notation and systematization of different approaches along important model dimensions; (3) indicate what characteristics of an application should be taken into account when selecting a position encoding; and (4) provide stimuli for future research.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference64 articles.

1. On the cross-lingual transferability of monolingual representations;Artetxe,2020

2. Layer normalization;Ba;CoRR,2016

3. Neural machine translation by jointly learning to align and translate;Bahdanau,2015

4. Non-autoregressive transformer by position learning;Bao;CoRR,2019

5. Longformer: The long-document transformer;Beltagy;CoRR,2020

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3