Hierarchical Phrase-Based Translation with Weighted Finite-State Transducers and Shallow-n Grammars

Author:

de Gispert Adrià1,Iglesias Gonzalo2,Blackwood Graeme1,R. Banga Eduardo2,Byrne William1

Affiliation:

1. University of Cambridge

2. University of Vigo

Abstract

In this article we describe HiFST, a lattice-based decoder for hierarchical phrase-based translation and alignment. The decoder is implemented with standard Weighted Finite-State Transducer (WFST) operations as an alternative to the well-known cube pruning procedure. We find that the use of WFSTs rather than k-best lists requires less pruning in translation search, resulting in fewer search errors, better parameter optimization, and improved translation performance. The direct generation of translation lattices in the target language can improve subsequent rescoring procedures, yielding further gains when applying long-span language models and Minimum Bayes Risk decoding. We also provide insights as to how to control the size of the search space defined by hierarchical rules. We show that shallow-n grammars, low-level rule catenation, and other search constraints can help to match the power of the translation system to specific language pairs.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Utility of Hierarchical Phrase-Based Model Machine Translation for Low Resource Languages;Computational Linguistics and Intelligent Text Processing;2023

2. Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification;ACM Transactions on Asian and Low-Resource Language Information Processing;2020-03-02

3. Singular value automata and approximate minimization;Mathematical Structures in Computer Science;2019-05-27

4. Generalization bounds for learning weighted automata;Theoretical Computer Science;2018-03

5. Source sentence simplification for statistical machine translation;Computer Speech & Language;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3