Native Language Identification With Classifier Stacking and Ensembles

Author:

Malmasi Shervin1,Dras Mark2

Affiliation:

1. Harvard Medical School.

2. Macquarie University, Department of Computing.

Abstract

Ensemble methods using multiple classifiers have proven to be among the most successful approaches for the task of Native Language Identification (NLI), achieving the current state of the art. However, a systematic examination of ensemble methods for NLI has yet to be conducted. Additionally, deeper ensemble architectures such as classifier stacking have not been closely evaluated. We present a set of experiments using three ensemble-based models, testing each with multiple configurations and algorithms. This includes a rigorous application of meta-classification models for NLI, achieving state-of-the-art results on several large data sets, evaluated in both intra-corpus and cross-corpus modes.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference99 articles.

1. Aue, Anthony and Michael Gamon. 2005. Customizing sentiment classifiers to new domains: A case study. Technical Report, Microsoft Research. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/new_domain_sentiment.pdf.

2. A Comparison of Decision Tree Ensemble Creation Techniques

3. Neural Networks and Spelling Features for Native Language Identification

4. Blanchard, Daniel, Joel Tetreault, Derrick Higgins, Aoife Cahill, and Martin Chodorow. 2013. TOEFL11: A corpus of non-native English. Technical report ETSRR-13-14, Educational Testing Service.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3