Linguistic Parameters of Spontaneous Speech for identifying Mild Cognitive Impairment and Alzheimer’s Disease

Author:

Vincze Veronika1,Szabó Martina Katalin23,Hoffmann Ildikó45,Tóth László6,Pákáski Magdolna7,Kálmán János8,Gosztolya Gábor9

Affiliation:

1. MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary. vinczev@inf.u-szeged.hu

2. MTA TK Computational Social Science - Research Center for Educational and Network Studies (CSS-RECENS), Budapest, Hungary. martina@inf.u-szeged.hu

3. University of Szeged, Institute of Informatics, Szeged, Hungary

4. Research Centre for Linguistics, Eötvös Loránd Research Network, Budapest, Hungary. hoffmannildi@gmail.com

5. University of Szeged, Department of Hungarian Linguistics, Szeged, Hungary

6. University of Szeged, Institute of Informatics, Szeged, Hungary. tothl@inf.u-szeged.hu

7. University of Szeged, Department of Psychiatry, Szeged, Hungary. babikne.pakaski.magdolna@med.u-szeged.hu

8. University of Szeged, Department of Psychiatry, Szeged, Hungary. kalman.janos@med.u-szeged.hu

9. MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary. ggabor@inf.u-szeged.hu

Abstract

Abstract In this paper, we seek to automatically identify Hungarian patients suffering from mild cognitive impairment (MCI) or mild Alzheimer’s Disease (mAD) based on their speech transcripts, focusing only on linguistic features. In addition to the features examined in our earlier study, we introduce syntactic, semantic and pragmatic features of spontaneous speech that might affect the detection of dementia. In order to ascertain the most useful features for distinguishing healthy controls, MCI patients and mAD patients, we will carry out a statistical analysis of the data and investigate the significance level of the extracted features among various speaker group pairs and for various speaking tasks. In the second part of the paper, we use this rich feature set as a basis for an effective discrimination among the three speaker groups. In our machine learning experiments, we will analyze the efficacy of each feature group separately. Our model which uses all the features achieves competitive scores, either with or without demographic information (3-class accuracy values: 68–70%, 2-class accuracy values: 77.3–80%). We also analyze how different data recording scenarios affect linguistic features and how they can be productively used when distinguishing MCI patients from healthy controls.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3