Using Semantics for Granularities of Tokenization

Author:

Riedl Martin1,Biemann Chris2

Affiliation:

1. University of Stuttgart, Institut für maschinelle Sprachverarbeitung.

2. University of Hamburg, Language Technology Group.

Abstract

Depending on downstream applications, it is advisable to extend the notion of tokenization from low-level character-based token boundary detection to identification of meaningful and useful language units. This entails both identifying units composed of several single words that form a several single words that form a, as well as splitting single-word compounds into their meaningful parts. In this article, we introduce unsupervised and knowledge-free methods for these two tasks. The main novelty of our research is based on the fact that methods are primarily based on distributional similarity, of which we use two flavors: a sparse count-based and a dense neural-based distributional semantic model. First, we introduce DRUID, which is a method for detecting MWEs. The evaluation on MWE-annotated data sets in two languages and newly extracted evaluation data sets for 32 languages shows that DRUID compares favorably over previous methods not utilizing distributional information. Second, we present SECOS, an algorithm for decompounding close compounds. In an evaluation of four dedicated decompounding data sets across four languages and on data sets extracted from Wiktionary for 14 languages, we demonstrate the superiority of our approach over unsupervised baselines, sometimes even matching the performance of previous language-specific and supervised methods. In a final experiment, we show how both decompounding and MWE information can be used in information retrieval. Here, we obtain the best results when combining word information with MWEs and the compound parts in a bag-of-words retrieval set-up. Overall, our methodology paves the way to automatic detection of lexical units beyond standard tokenization techniques without language-specific preprocessing steps such as POS tagging.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3