Approximating Probabilistic Models as Weighted Finite Automata

Author:

Suresh Ananda Theertha1,Roark Brian2,Riley Michael3,Schogol Vlad4

Affiliation:

1. Google Research. theertha@google.com

2. Google Research. roark@google.com

3. Google Research. riley@google.com

4. Google Research. vlads@google.com

Abstract

Abstract Weighted finite automata (WFAs) are often used to represent probabilistic models, such as ngram language models, because among other things, they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a WFA such that the Kullback-Leibler divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization step, both of which can be performed efficiently.We demonstrate the usefulness of our approach on various tasks, including distilling n-gram models from neural models, building compact language models, and building open-vocabulary character models. The algorithms used for these experiments are available in an open-source software library.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3