“Now I Get It!”: Eureka Experiences During the Acquisition of Mathematical Concepts

Author:

Barot Charlotte1,Chevalier Louise1,Martin Lucie1,Izard Véronique1

Affiliation:

1. Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France

Abstract

Abstract Many famous scientists have reported anecdotes where a new understanding occurred to them suddenly, in an unexpected flash. Do people generally experience such “Eureka” moments when learning science concepts? And if so, do these episodes truly vehicle sudden insights, or is this impression illusory? To address these questions, we developed a paradigm where participants were taught the mathematical concept of geodesic, which generalizes the common notion of straight line to straight trajectories drawn on curved surfaces. After studying lessons introducing this concept on the sphere, participants (N = 56) were tested on their understanding of geodesics on the sphere and on other surfaces. Our findings indicate that Eureka experiences are common when learning mathematics, with reports by 34 (61%) participants. Moreover, Eureka experiences proved an accurate description of participants’ learning, in two respects. First, Eureka experiences were associated with learning and generalization: the participants who reported experiencing Eurekas performed better at identifying counterintuitive geodesics on new surfaces. Second, and in line with the firstperson experience of a sudden insight, our findings suggest that the learning mechanisms responsible for Eureka experiences are inaccessible to reflective introspection. Specifically, reports of Eureka experiences and of participants’ confidence in their own understanding were associated with different profiles of performance, indicating that the mechanisms bringing about Eureka experiences and those informing reflective confidence were at least partially dissociated. Learning mathematical concepts thus appears to involve mechanisms that operate unconsciously, except when a key computational step is reached and a sudden insight breaks into consciousness.

Funder

ANR

Sorbonne Université

Publisher

MIT Press

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3