Mating with Multi-Armed Bandits: Reinforcement Learning Models of Human Mate Search

Author:

Conroy-Beam Daniel1

Affiliation:

1. Department of Psychological and Brain Sciences, University of California, Santa Barbara

Abstract

Abstract Mate choice requires navigating an exploration-exploitation trade-off. Successful mate choice requires choosing partners who have preferred qualities; but time spent determining one partner’s qualities could have been spent exploring for potentially superior alternatives. Here I argue that this dilemma can be modeled in a reinforcement learning framework as a multi-armed bandit problem. Moreover, using agent-based models and a sample of k = 522 real-world romantic dyads, I show that a reciprocity-weighted Thompson sampling algorithm performs well both in guiding mate search in noisy search environments and in reproducing the mate choices of real-world participants. These results provide a formal model of the understudied psychology of human mate search. They additionally offer implications for our understanding of person perception and mate choice.

Funder

National Science Foundation

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3