On the Mathematical Relationship Between Contextual Probability and N400 Amplitude

Author:

Michaelov James A.1ORCID,Bergen Benjamin K.1ORCID

Affiliation:

1. Department of Cognitive Science, University of California San Diego

Abstract

Abstract Accounts of human language comprehension propose different mathematical relationships between the contextual probability of a word and how difficult it is to process, including linear, logarithmic, and super-logarithmic ones. However, the empirical evidence favoring any of these over the others is mixed, appearing to vary depending on the index of processing difficulty used and the approach taken to calculate contextual probability. To help disentangle these results, we focus on the mathematical relationship between corpus-derived contextual probability and the N400, a neural index of processing difficulty. Specifically, we use 37 contemporary transformer language models to calculate the contextual probability of stimuli from 6 experimental studies of the N400, and test whether N400 amplitude is best predicted by a linear, logarithmic, super-logarithmic, or sub-logarithmic transformation of the probabilities calculated using these language models, as well as combinations of these transformed metrics. We replicate the finding that on some datasets, a combination of linearly and logarithmically-transformed probability can predict N400 amplitude better than either metric alone. In addition, we find that overall, the best single predictor of N400 amplitude is sub-logarithmically-transformed probability, which for almost all language models and datasets explains all the variance in N400 amplitude otherwise explained by the linear and logarithmic transformations. This is a novel finding that is not predicted by any current theoretical accounts, and thus one that we argue is likely to play an important role in increasing our understanding of how the statistical regularities of language impact language comprehension.

Publisher

MIT Press

Reference108 articles.

1. Information theory and an extension of the maximum likelihood principle;Akaike,1973

2. Retrieval (N400) and integration (P600) in expectation-based comprehension;Aurnhammer;PLOS ONE,2021

3. Comparing gated and simple recurrent neural network architectures as models of human sentence processing;Aurnhammer,2019

4. Evaluating information-theoretic measures of word prediction in naturalistic sentence reading;Aurnhammer;Neuropsychologia,2019

5. The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech;Aylett;Language and Speech,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3