The Pandemic in Words: Tracking Fast Semantic Changes via a Large-Scale Word Association Task

Author:

Laurino Julieta12,De Deyne Simon3,Cabana Álvaro45,Kaczer Laura12

Affiliation:

1. Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)-CONICET, Buenos Aires, Argentina

2. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

3. Computational Cognitive Science Lab, Complex Human Data Hub, University of Melbourne, Melbourne, Australia

4. Instituto de Fundamentos y Métodos y Centro de Investigación Básica en Psicología (CIBPsi), Facultad de Psicología, Universidad de la República, Montevideo, Uruguay

5. Centro Interdisciplinario en Ciencia de Datos y Aprendizaje Automático (CICADA), Universidad de la República, Montevideo, Uruguay

Abstract

AbstractMost words have a variety of senses that can be added, removed, or altered over time. Understanding how they change across different contexts and time periods is crucial for revealing the role of language in social and cultural evolution. In this study we aimed to explore the collective changes in the mental lexicon as a consequence of the COVID-19 pandemic. We performed a large-scale word association experiment in Rioplatense Spanish. The data were obtained in December 2020, and compared with responses previously obtained from the Small World of Words database (SWOW-RP, Cabana et al., 2023). Three different word-association measures detected changes in a word’s mental representation from Precovid to Covid. First, significantly more new associations appeared for a set of pandemic-related words. These new associations can be interpreted as incorporating new senses. For example, the word ‘isolated’ incorporated direct associations with ‘coronavirus’ and ‘quarantine’. Second, when analyzing the distribution of responses, we observed a greater Kullback-Leibler divergence (i.e., relative entropy) between the Precovid and Covid periods for pandemic words. Thus, some words (e.g., ‘protocol’, or ‘virtual’) changed their overall association patterns due to the COVID-19 pandemic. Finally, using semantic similarity analysis, we evaluated the changes between the Precovid and Covid periods for each cue word’s nearest neighbors and the changes in their similarity to certain word senses. We found a larger diachronic difference for pandemic cues where polysemic words like ‘immunity’ or ‘trial’ increased their similarity to sanitary/health words during the Covid period. We propose that this novel methodology can be expanded to other scenarios of fast diachronic semantic changes.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Linguistics and Language,Developmental and Educational Psychology,Experimental and Cognitive Psychology

Reference43 articles.

1. Distributional semantics and linguistic theory;Boleda;Annual Review of Linguistics,2020

2. Frequency of Use and the Organization of Language

3. Navigating word association norms to extract semantic information;Borge-Holthoefer,2009

4. Assessing the impact of mobility reduction in the second wave of COVID-19;Cabana,2021

5. The “small world of words” free association norms for Rioplatense Spanish;Cabana;Behavior Research Methods,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3