Preserved Object Weight Processing after Bilateral Lateral Occipital Complex Lesions

Author:

Buckingham Gavin1,Holler Desiree2,Michelakakis Elizabeth E.3,Snow Jacqueline C.2

Affiliation:

1. University of Exeter

2. University of Nevada

3. Heriot-Watt University, Edinburgh, UK

Abstract

Object interaction requires knowledge of the weight of an object, as well as its shape. The lateral occipital complex (LOC), an area within the ventral visual pathway, is well known to be critically involved in processing visual shape information. Recently, however, LOC has also been implicated in coding object weight before grasping—a result that is surprising because weight is a nonvisual object property that is more relevant for motor interaction than visual perception. Here, we examined the causal role of LOC in perceiving heaviness and in determining appropriate fingertip forces during object lifting. We studied perceptions of heaviness and lifting behavior in a neuropsychological patient (M.C.) who has large bilateral occipitotemporal lesions that include LOC. We compared the patient's performance to a group of 18 neurologically healthy age-matched controls. Participants were asked to lift and report the perceived heaviness of a set of equally weighted spherical objects of various sizes—stimuli which typically induce the size–weight illusion, in which the smaller objects feel heavier than the larger objects despite having identical mass. Despite her ventral stream lesions, M.C. experienced a robust size–weight illusion induced by visual cues to object volume, and the magnitude of the illusion in M.C. was comparable to age-matched controls. Similarly, M.C. evinced predictive fingertip force scaling to visual size cues during her initial lifts of the objects that were well within the normal range. These single-case neuropsychological findings suggest that LOC is unlikely to play a causal role in computing object weight.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3