Neural Mechanisms Determining the Duration of Task-free, Self-paced Visual Perception

Author:

Baror Shira12,Baumgarten Thomas J13,He Biyu J.1ORCID

Affiliation:

1. New York University Grossman School of Medicine

2. Hebrew University of Jerusalem

3. Heinrich Heine University, Düsseldorf

Abstract

Abstract Humans spend hours each day spontaneously engaging with visual content, free from specific tasks and at their own pace. Currently, the brain mechanisms determining the duration of self-paced perceptual behavior remain largely unknown. Here, participants viewed naturalistic images under task-free settings and self-paced each image's viewing duration while undergoing EEG and pupillometry recordings. Across two independent data sets, we observed large inter- and intra-individual variability in viewing duration. However, beyond an image's presentation order and category, specific image content had no consistent effects on spontaneous viewing duration across participants. Overall, longer viewing durations were associated with sustained enhanced posterior positivity and anterior negativity in the ERPs. Individual-specific variations in the spontaneous viewing duration were consistently correlated with evoked EEG activity amplitudes and pupil size changes. By contrast, presentation order was selectively correlated with baseline alpha power and baseline pupil size. Critically, spontaneous viewing duration was strongly predicted by the temporal stability in neural activity patterns starting as early as 350 msec after image onset, suggesting that early neural stability is a key predictor for sustained perceptual engagement. Interestingly, neither bottom–up nor top–down predictions about image category influenced spontaneous viewing duration. Overall, these results suggest that individual-specific factors can influence perceptual processing at a surprisingly early time point and influence the multifaceted ebb and flow of spontaneous human perceptual behavior in naturalistic settings.

Funder

National Institutes of Health

Irma T. Hirschl Career Scientist Award

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3