Information Processing in the Mental Workspace Is Fundamentally Distributed

Author:

Schlegel Alexander,Alexander Prescott,Tse Peter U.

Abstract

Abstract The brain is a complex, interconnected information processing network. In humans, this network supports a mental workspace that enables high-level abilities such as scientific and artistic creativity. Do the component processes underlying these abilities occur in discrete anatomical modules, or are they distributed widely throughout the brain? How does the flow of information within this network support specific cognitive functions? Current approaches have limited ability to answer such questions. Here, we report novel multivariate methods to analyze information flow within the mental workspace during visual imagery manipulation. We find that mental imagery entails distributed information flow and shared representations throughout the cortex. These findings challenge existing, anatomically modular models of the neural basis of higher-order mental functions, suggesting that such processes may occur at least in part at a fundamentally distributed level of organization. The novel methods we report may be useful in studying other similarly complex, high-level informational processes.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference55 articles.

1. Working memory: Looking back and looking forward;Baddeley;Nature Reviews Neuroscience,2003

2. Neural mechanisms of object-based attention;Baldauf;Science,2014

3. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference;Barnett;Journal of Neuroscience Methods,2014

4. Understanding complexity in the human brain;Bassett;Trends in Cognitive Sciences,2011

5. Dynamic reconfiguration of human brain networks during learning;Bassett;Proceedings of the National Academy of Sciences, U.S.A.,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3