Disruption of Anterior Temporal Lobe Reduces Distortions in Memory From Category Knowledge

Author:

Tompary Alexa1ORCID,Xia Alice2,Coslett Branch H.3,Thompson-Schill Sharon L.3

Affiliation:

1. Drexel University, Philadelphia, PA

2. Brown University, Providence, RI

3. University of Pennsylvania

Abstract

Abstract Memory retrieval does not provide a perfect recapitulation of past events, but instead an imperfect reconstruction of event-specific details and general knowledge. However, it remains unclear whether this reconstruction relies on mixtures of signals from different memory systems, including one supporting general knowledge. Here, we investigate whether the anterior temporal lobe (ATL) distorts new memories because of prior category knowledge. In this preregistered experiment (n = 36), participants encoded and retrieved image–location associations. Most images' locations were clustered according to their category, but some were in random locations. With this protocol, we previously demonstrated that randomly located images were retrieved closer to their category cluster relative to their encoded locations, suggesting an influence of category knowledge. We combined this procedure with TMS delivered to the left ATL before retrieval. We separately examined event-specific details (error) and category knowledge (bias) to identify distinct signals attributable to different memory systems. We found that TMS to ATL attenuated bias in location memory, but this effect was limited to exploratory analyses of atypical category members of animal categories. The magnitude of error was not impacted, suggesting that a memory's fidelity can be decoupled from its distortion by category knowledge. This raises the intriguing possibility that retrieval is jointly supported by separable memory systems.

Funder

National Institute of Neurological Disorders and Stroke at the National Institutes of Health

National Institute of Mental Health at the National Institutes of Health

National Institute on Deafness and Other Communication Disorders at the National Institutes of Health

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3