White Noise Improves Learning by Modulating Activity in Dopaminergic Midbrain Regions and Right Superior Temporal Sulcus

Author:

Rausch Vanessa H.1,Bauch Eva M.1,Bunzeck Nico12

Affiliation:

1. 1University Medical Center Hamburg-Eppendorf

2. 2University of Lübeck

Abstract

Abstract In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise—but not control sounds, such as a sinus tone—slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS—a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference51 articles.

1. Reward-motivated learning: Mesolimbic activation precedes memory formation.;Adcock;Neuron,2006

2. Noise improves suprathreshold discrimination in cochlear-implant listeners.;Behnam;Hearing Research,2003

3. Dopamine D1 agonist activates temporal lobe structures in primates.;Black;Journal of Neurophysiology,2000

4. Absolute coding of stimulus novelty in the human substantia nigra/VTA.;Bunzeck;Neuron,2006

5. Pharmacological dissociation of novelty responses in the human brain.;Bunzeck;Cerebral Cortex,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3