Rhythm Violation Enhances Auditory-Evoked Responses to the Extent of Overriding Sensory Adaptation in Passive Listening

Author:

Menceloglu Melisa1,Grabowecky Marcia1,Suzuki Satoru1

Affiliation:

1. Northwestern University

Abstract

Abstract Sensory systems utilize temporal structure in the environment to build expectations about the timing of forthcoming events. We investigated the effects of rhythm-based temporal expectation on auditory responses measured with EEG recorded from the frontocentral sites implicated in auditory processing. By manipulating temporal expectation and the interonset interval (IOI) of tones, we examined how neural responses adapted to auditory rhythm and reacted to stimuli that violated the rhythm. Participants passively listened to the tones while watching a silent nature video. In Experiment 1 (n = 22), in the long-IOI block, tones were frequently presented (80%) with 1.7-sec IOI and infrequently presented (20%) with 1.2-sec IOI, generating unexpectedly early tones that violated temporal expectation. Conversely, in the short-IOI block, tones were frequently presented with 1.2-sec IOI and infrequently presented with 1.7-sec IOI, generating late tones. We analyzed the tone-evoked N1–P2 amplitude of ERPs and intertrial phase clustering in the theta–alpha band. The results provided evidence of strong delay-dependent adaptation effects (short-term, sensitive to IOI), weak cumulative adaptation effects (long-term, driven by tone repetition over time), and robust temporal-expectation violation effects over and above the adaptation effects. Experiment 2 (n = 22) repeated Experiment 1 with shorter IOIs of 1.2 and 0.7 sec. Overall, we found evidence of strong delay-dependent adaptation effects, weak cumulative adaptation effects (which may most efficiently accumulate at the tone presentation rate of ∼1 Hz), and robust temporal-expectation violation effects that substantially boost auditory responses to the extent of overriding the delay-dependent adaptation effects likely through mechanisms involved in exogenous attention.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3