Turning the Face Inversion Effect on Its Head: Violated Expectations of Orientation, Lighting, and Gravity Enhance N170 Amplitudes

Author:

Allen-Davidian Yasmin1ORCID,Russo Manuela1,Yamamoto Naohide1ORCID,Kaufman Jordy2ORCID,Pegna Alan J.3ORCID,Johnston Patrick1ORCID

Affiliation:

1. Queensland University of Technology

2. Swinburne University of Technology, Melbourne, Australia

3. University of Queensland

Abstract

Face inversion effects occur for both behavioral and electrophysiological responses when people view faces. In EEG, inverted faces are often reported to evoke an enhanced amplitude and delayed latency of the N170 ERP. This response has been attributed to the indexing of specialized face processing mechanisms within the brain. However, inspection of the literature revealed that, although N170 is consistently delayed to a variety of face representations, only photographed faces invoke enhanced N170 amplitudes upon inversion. This suggests that the increased N170 amplitudes to inverted faces may have other origins than the inversion of the face's structure. We hypothesize that the unique N170 amplitude response to inverted photographed faces stems from multiple expectation violations, over and above structural inversion. For instance, rotating an image of a face upside–down not only violates the expectation that faces appear upright but also lifelong priors about illumination and gravity. We recorded EEG while participants viewed face stimuli (upright vs. inverted), where the faces were illuminated from above versus below, and where the models were photographed upright versus hanging upside–down. The N170 amplitudes were found to be modulated by a complex interaction between orientation, lighting, and gravity factors, with the amplitudes largest when faces consistently violated all three expectations. These results confirm our hypothesis that face inversion effects on N170 amplitudes are driven by a violation of the viewer's expectations across several parameters that characterize faces, rather than a disruption in the configurational disposition of its features.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3