Brain Regions Engaged by Part- and Whole-task Performance in a Video Game: A Model-based Test of the Decomposition Hypothesis

Author:

Anderson John R.,Bothell Daniel,Fincham Jon M.,Anderson Abraham R.,Poole Ben,Qin Yulin

Abstract

Abstract Part- and whole-task conditions were created by manipulating the presence of certain components of the Space Fortress video game. A cognitive model was created for two-part games that could be combined into a model that performed the whole game. The model generated predictions both for behavioral patterns and activation patterns in various brain regions. The activation predictions concerned both tonic activation that was constant in these regions during performance of the game and phasic activation that occurred when there was resource competition. The model's predictions were confirmed about how tonic and phasic activation in different regions would vary with condition. These results support the Decomposition Hypothesis that the execution of a complex task can be decomposed into a set of information-processing components and that these components combine unchanged in different task conditions. In addition, individual differences in learning gains were predicted by individual differences in phasic activation in those regions that displayed highest tonic activity. This individual difference pattern suggests that the rate of learning of a complex skill is determined by capacity limits.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3