Cognitive Control as a Multivariate Optimization Problem

Author:

Ritz Harrison1,Leng Xiamin1,Shenhav Amitai1

Affiliation:

1. Brown University

Abstract

Abstract A hallmark of adaptation in humans and other animals is our ability to control how we think and behave across different settings. Research has characterized the various forms cognitive control can take—including enhancement of goal-relevant information, suppression of goal-irrelevant information, and overall inhibition of potential responses—and has identified computations and neural circuits that underpin this multitude of control types. Studies have also identified a wide range of situations that elicit adjustments in control allocation (e.g., those eliciting signals indicating an error or increased processing conflict), but the rules governing when a given situation will give rise to a given control adjustment remain poorly understood. Significant progress has recently been made on this front by casting the allocation of control as a decision-making problem. This approach has developed unifying and normative models that prescribe when and how a change in incentives and task demands will result in changes in a given form of control. Despite their successes, these models, and the experiments that have been developed to test them, have yet to face their greatest challenge: deciding how to select among the multiplicity of configurations that control can take at any given time. Here, we will lay out the complexities of the inverse problem inherent to cognitive control allocation, and their close parallels to inverse problems within motor control (e.g., choosing between redundant limb movements). We discuss existing solutions to motor control's inverse problems drawn from optimal control theory, which have proposed that effort costs act to regularize actions and transform motor planning into a well-posed problem. These same principles may help shed light on how our brains optimize over complex control configuration, while providing a new normative perspective on the origins of mental effort.

Funder

National Science Foundation

National Institutes of Health

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3