Limited Pairings of Electrical Micro-stimulation of the Ventral Tegmental Area and a Visual Stimulus Enhance Visual Cortical Responses

Author:

Herpers Jerome12ORCID,Vanduffel Wim1234,Vogels Rufin12

Affiliation:

1. KU Leuven Medical School, Belgium

2. Leuven Brain Institute, KU Leuven, Belgium

3. Massachusetts General Hospital, Boston

4. Harvard Medical School, Boston, MA

Abstract

Abstract Previous studies demonstrated that pairing a visual stimulus and electrical micro-stimulation of the ventral tegmental area (VTA-EM) for multiple days is sufficient to induce visual cortical plasticity and changes perception. However, a brief epoch of VTA-EM–stimulus pairing within a single day has been shown to result in a behavioral preference for the paired stimulus. Here, we investigated whether a brief single-day session of VTA-EM–stimulus pairings is sufficient to induce changes in visual cortical responses. We examined macaque posterior inferior temporal (PIT) cortex because previous studies demonstrated response changes after VTA-EM stimulus pairing in that area. Multi-unit recordings in PIT were interleaved with VTA-EM–stimulus pairing epochs. During the short VTA-EM–stimulus pairing epochs (60 pairings), one image (fractal) was paired with VTA-EM (STIM) whereas another, unpaired fractal was presented as control. Two other fractals (dummies) were presented only during the recordings. The difference in response between the STIM and control fractals already increased after the first VTA-EM–stimulus pairing epoch, reflecting a relative increase of the response to the STIM fractal. However, the response to the STIM fractal did not increase further with more VTA-EM–stimulus pairing epochs. The relative increase in firing rate for the paired fractal was present early in the response, in line with a local/ bottom–up origin. These effects were absent when comparing the responses to the dummies pre- and post-VTA-EM. This study shows that pairing a visual image and VTA-EM in a brief single-day session is sufficient to increase the response for the paired image in macaque PIT.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

The European Union's Horizon 2020 Framework Programme for Research and Innovation

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3