Orienting Attention in Time Activates Left Intraparietal Sulcus for Both Perceptual and Motor Task Goals

Author:

Davranche Karen1,Nazarian Bruno2,Vidal Franck1,Coull Jennifer1

Affiliation:

1. 1Université de Provence and Centre National de la Recherche Scientifique

2. 2Centre Hospitalier Universitaire de La Timone

Abstract

Abstract Attention can be directed not only toward a location in space but also to a moment in time (“temporal orienting”). Temporally informative cues allow subjects to predict when an imminent event will occur, thereby speeding responses to that event. In contrast to spatial orienting, temporal orienting preferentially activates left inferior parietal cortex. Yet, left parietal cortex is also implicated in selective motor attention, suggesting its activation during temporal orienting could merely reflect incidental engagement of preparatory motor processes. Using fMRI, we therefore examined whether temporal orienting would still activate left parietal cortex when the cued target required a difficult perceptual discrimination rather than a speeded motor response. Behaviorally, temporal orienting improved accuracy of target identification as well as speed of target detection, demonstrating the general utility of temporal cues. Crucially, temporal orienting selectively activated left inferior parietal cortex for both motor and perceptual versions of the task. Moreover, conjunction analysis formally revealed a region deep in left intraparietal sulcus (IPS) as common to both tasks, thereby identifying it as a core neural substrate for temporal orienting. Despite the context-independent nature of left IPS activation, complementary psychophysiological interaction analysis revealed how the functional connectivity of left IPS changed as a function of task context. Specifically, left IPS activity covaried with premotor activity during motor temporal orienting but with visual extrastriate activity during perceptual temporal orienting, thereby revealing a cooperative network that comprises both temporal orienting and task-specific processing nodes.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3