Affiliation:
1. Albert-Ludwigs-Universität Freiburg
Abstract
Inferring knowledge is a core aspect of human cognition. We can form complex sentences connecting different pieces of information, such as in conditional statements like “if someone drinks alcohol, then they must be older than 18.” These are relevant for causal reasoning about our environment and allow us to think about hypothetical scenarios. Another central aspect to forming complex statements is to quantify about sets, such as in “some apples are green.” Reasoning in terms of the ability to form these statements is not yet fully understood, despite being an active field of interdisciplinary research. On a theoretical level, several conceptual frameworks have been proposed, predicting diverging brain activation patterns during the reasoning process. We present a meta-analysis comprising the results of 32 neuroimaging experiments about reasoning, which we subdivided by their structure, content, and requirement for world knowledge. In conditional tasks, we identified activation in the left middle and rostrolateral pFC and parietal regions, whereas syllogistic tasks elicit activation in Broca's complex, including the BG. Concerning the content differentiation, abstract tasks exhibit activation in the left inferior and rostrolateral pFC and inferior parietal regions, whereas content tasks are in the left superior pFC and parieto-occipital regions. The findings clarify the neurocognitive mechanisms of reasoning and exhibit clear distinctions between the task's type and content. Overall, we found that the activation differences clarify inconsistent results from accumulated data and serve as useful scaffolding differentiations for theory-driven interpretations of the neuroscientific correlates of human reasoning.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献