Fixation-related Brain Potentials during Semantic Integration of Object–Scene Information

Author:

Coco Moreno I.12,Nuthmann Antje3,Dimigen Olaf4

Affiliation:

1. The University of East London

2. CICPSI, Faculdade de Psicologia, Universidade de Lisboa

3. Christian-Albrechts-Universität zu Kiel

4. Humboldt-Universität zu Berlin

Abstract

Abstract In vision science, a particularly controversial topic is whether and how quickly the semantic information about objects is available outside foveal vision. Here, we aimed at contributing to this debate by coregistering eye movements and EEG while participants viewed photographs of indoor scenes that contained a semantically consistent or inconsistent target object. Linear deconvolution modeling was used to analyze the ERPs evoked by scene onset as well as the fixation-related potentials (FRPs) elicited by the fixation on the target object (t) and by the preceding fixation (t − 1). Object–scene consistency did not influence the probability of immediate target fixation or the ERP evoked by scene onset, which suggests that object–scene semantics was not accessed immediately. However, during the subsequent scene exploration, inconsistent objects were prioritized over consistent objects in extrafoveal vision (i.e., looked at earlier) and were more effortful to process in foveal vision (i.e., looked at longer). In FRPs, we demonstrate a fixation-related N300/N400 effect, whereby inconsistent objects elicit a larger frontocentral negativity than consistent objects. In line with the behavioral findings, this effect was already seen in FRPs aligned to the pretarget fixation t − 1 and persisted throughout fixation t, indicating that the extraction of object semantics can already begin in extrafoveal vision. Taken together, the results emphasize the usefulness of combined EEG/eye movement recordings for understanding the mechanisms of object–scene integration during natural viewing.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3