Statistical Complexity Analysis of Neurovascular Coupling with Cognitive Stimulation in Healthy Participants

Author:

Rojas-Pescio Héctor1,Beishon Lucy2,Panerai Ronney2,Chacón Max1

Affiliation:

1. Universidad de Santiago de Chile

2. University of Leicester

Abstract

Abstract Neurovascular coupling (NVC) is the tight relationship between changes in cerebral blood flow and neural activation. NVC can be evaluated non-invasively using transcranial Doppler ultrasound (TCD)-measured changes in brain activation (cerebral blood velocity [CBv]) using different cognitive tasks and stimuli. This study used a novel approach to analyzing CBv changes occurring in response to 20 tasks from the Addenbrooke's Cognitive Examination III in 40 healthy individuals. The novel approach compared various information entropy families (permutation, Tsallis, and Rényi entropy) and statistical complexity measures based on disequilibrium. Using this approach, we found the majority of the attention, visuospatial, and memory tasks from the Addenbrooke's Cognitive Examination III that showed lower statistical complexity values when compared with the resting state. On the entropy-complexity (HC) plane, a receiver operating characteristic curve was used to distinguish between baseline and cognitive tasks using the area under the curve. Best area under the curve values were 0.91 ± 0.04, p = .001, to distinguish between resting and cognitively active states. Our findings show that brain hemodynamic signals captured with TCD can be used to distinguish between resting state (baseline) and cognitive effort (stimulation paradigms) using entropy and statistical complexity as an alternative method to traditional techniques such as coherent averaging of CBv signals. Further work should directly compare these analysis methods to identify the optimal method for analyzing TCD-measured changes in NVC.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3