Transcranial Random Noise Stimulation Boosts Early Motion Perception Learning Rather than the Later Performance Plateau

Author:

Liu Na1,Wu Di1,Wang Yifan1,Zhang Pan2,Zhang Yinling1

Affiliation:

1. Air Force Medical University, Xi'an, China

2. Hebei Normal University, Shijiazhuang, China

Abstract

Abstract The effect of transcranial random noise stimulation (tRNS) on visual perceptual learning has only been investigated during early training sessions, and the influence of tRNS on later performance is unclear. We engaged participants first in 8 days of training to reach a plateau (Stage 1) and then in continued training for 3 days (Stage 2). In the first group, tRNS was applied to visual areas of the brain while participants were trained on a coherent motion direction identification task over a period of 11 days (Stage 1 + Stage 2). In the second group, participants completed an 8-day training period without any stimulation to reach a plateau (Stage 1); after that, they continued training for 3 days, during which tRNS was administered (Stage 2). In the third group, participants completed the same training as the second group, but during Stage 2, tRNS was replaced by sham stimulation. Coherence thresholds were measured three times: before training, after Stage 1, and after Stage 2. Compared with sham simulation, tRNS did not improve coherence thresholds during the plateau period. The comparison of learning curves between the first and third groups showed that tRNS decreased thresholds in the early training stage, but it failed to improve plateau thresholds. For the second and third groups, tRNS did not further enhance plateau thresholds after the continued 3-day training period. In conclusion, tRNS facilitated visual perceptual learning in the early stage, but its effect disappeared as the training continued.

Funder

Natural Science Basic Research Program of Shaanxi Province

Youth Training Program in Military Medical Science and Technology

Natural Science Foundation of Hebei Province

Science Foundation of Hebei Normal University

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3