The Role of Right Prefrontal and Medial Cortex in Response Inhibition: Interfering with Action Restraint and Action Cancellation Using Transcranial Magnetic Brain Stimulation

Author:

Dambacher Franziska,Sack Alexander T.,Lobbestael Jill,Arntz Arnoud,Brugman Suzanne,Schuhmann Teresa

Abstract

Abstract The ability of inhibiting impulsive urges is paramount for human behavior. Such successful response inhibition has consistently been associated with activity in pFC. The current study aims to unravel the differential involvement of different areas within right pFC for successful action restraint versus action cancellation. These two conceptually different aspects of action inhibition were measured with a go/no-go task (action restraint) and a stop signal task (action cancellation). Localization of relevant prefrontal activation was based on fMRI data. Significant task-related activation during successful action restraint was localized for each participant individually in right anterior insula (rAI), right superior frontal gyrus, and pre-SMA. Activation during successful action cancellation was localized in rAI, right middle frontal gyrus, and pre-SMA. Subsequently, fMRI-guided continuous thetaburst stimulation was applied to these regions. Results showed that the disruption of neural activity in rAI reduced both the ability to restrain (go/no-go) and cancel (stop signal) responses. In contrast, continuous thetaburst stimulation-induced disruption of the right superior frontal gyrus specifically impaired the ability to restrain from responding (go/no-go), while leaving the ability for action cancellation largely intact. Stimulation applied to right middle frontal gyrus and pre-SMA did not affect inhibitory processing in neither of the two tasks. These findings provide a more comprehensive perspective on the role of pFC in inhibition and cognitive control. The results emphasize the role of inferior frontal regions for global inhibition, whereas superior frontal regions seem to be specifically relevant for successful action restraint.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3