Event Probabilities Have a Different Impact on Early and Late Electroencephalographic Measures Regarded as Metrics of Prediction

Author:

Saurels Blake W.1ORCID,Johnston Alan2,Yarrow Kielan3,Arnold Derek H.1

Affiliation:

1. The University of Queensland, Brisbane, Australia

2. The University of Nottingham, United Kingdom

3. University of London, United Kingdom

Abstract

Abstract The oddball protocol has been used to study the neural and perceptual consequences of implicit predictions in the human brain. The protocol involves presenting a sequence of identical repeated events that are eventually broken by a novel “oddball” presentation. Oddball presentations have been linked to increased neural responding and to an exaggeration of perceived duration relative to repeated events. Because the number of repeated events in such protocols is circumscribed, as more repeats are encountered, the conditional probability of a further repeat decreases—whereas the conditional probability of an oddball increases. These facts have not been appreciated in many analyses of oddballs; repeats and oddballs have rather been treated as binary event categories. Here, we show that the human brain is sensitive to conditional event probabilities in an active, visual oddball paradigm. P300 responses (a relatively late component of visually evoked potentials measured with EEG) tended to be greater for less likely oddballs and repeats. By contrast, P1 responses (an earlier component) increased for repeats as a goal-relevant target presentation neared, but this effect occurred even when repeat probabilities were held constant, and oddball P1 responses were invariant. We also found that later, more likely oddballs seemed to last longer, and this effect was largely independent of the number of preceding repeats. These findings speak against a repetition suppression account of the temporal oddball effect. Overall, our data highlight an impact of event probability on later, rather than earlier, electroencephalographic measures previously related to predictive processes—and the importance of considering conditional probabilities in sequential presentation paradigms.

Funder

Australian Research Council

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3