Visual Processing of Contour Patterns under Conditions of Inattentional Blindness

Author:

Pitts Michael A.1,Martínez Antígona12,Hillyard Steven A.1

Affiliation:

1. 1University of California—San Diego

2. 2Nathan Kline Institute for Psychiatric Research, Orangeburg, NY

Abstract

Abstract An inattentional blindness paradigm was adapted to measure ERPs elicited by visual contour patterns that were or were not consciously perceived. In the first phase of the experiment, subjects performed an attentionally demanding task while task-irrelevant line segments formed square-shaped patterns or random configurations. After the square patterns had been presented 240 times, subjects' awareness of these patterns was assessed. More than half of all subjects, when queried, failed to notice the square patterns and were thus considered inattentionally blind during this first phase. In the second phase of the experiment, the task and stimuli were the same, but following this phase, all of the subjects reported having seen the patterns. ERPs recorded over the occipital pole differed in amplitude from 220 to 260 msec for the pattern stimuli compared with the random arrays regardless of whether subjects were aware of the patterns. At subsequent latencies (300–340 msec) however, ERPs over bilateral occipital-parietal areas differed between patterns and random arrays only when subjects were aware of the patterns. Finally, in a third phase of the experiment, subjects viewed the same stimuli, but the task was altered so that the patterns became task relevant. Here, the same two difference components were evident but were followed by a series of additional components that were absent in the first two phases of the experiment. We hypothesize that the ERP difference at 220–260 msec reflects neural activity associated with automatic contour integration whereas the difference at 300–340 msec reflects visual awareness, both of which are dissociable from task-related postperceptual processing.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3