Electroencephalographic Study on Sensory Integration in Visually Induced Postural Sway

Author:

Kagawa Takahiro1,Makeig Scott2,Miyakoshi Makoto2

Affiliation:

1. Aichi Institute of Technology

2. University of California, San Diego

Abstract

A periodically reversing optic flow animation, experienced while standing, induces an involuntary sway termed visually induced postural sway (VIPS). Interestingly, VIPS is suppressed during light finger touch to a stationary object. Here, we explored whether VIPS is mediated by parietal field activity in the dorsal visual stream as well as by activity in early visual areas, as has been suggested. We performed a mobile brain/body imaging study using high-density electroencephalographic recording from human participants (11 men and 3 women) standing during exposure to periodically reversing optic flow with and without light finger touch to a stable surface. We also performed recording their visuo-postural tracking movements as a typical visually guided movement to explore differences of cortical process of VIPS from the voluntary visuomotor process involving the dorsal stream. In the visuo-postural tracking condition, the participants moved their center of pressure in time with a slowly oscillating (expanding, shrinking) target rectangle. Source-resolved results showed that alpha band (8–13 Hz) activity in the medial and right occipital cortex during VIPS was modulated by the direction and velocity of optic flow and increased significantly during light finger touch. However, source-resolved potentials from the parietal association cortex showed no such modulation. During voluntary postural sway with feedback (but no visual flow) in which the dorsal stream is involved, sensorimotor areas produced more theta band (4–7 Hz) and less beta band (14–35 Hz) activity than during involuntary VIPS. These results suggest that VIPS involves cortical field dynamic changes in the early visual cortex rather than in the posterior parietal cortex of the visual dorsal stream.

Funder

The Swartz Foundation

Japan Society for the Promotion of Science

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3