Action Intention-based and Stimulus Regularity-based Predictions: Same or Different?

Author:

Korka Betina1,Schröger Erich1,Widmann Andreas12

Affiliation:

1. University of Leipzig

2. Leibniz Institute for Neurobiology, Magdeburg, Germany

Abstract

We act on the environment to produce desired effects, but we also adapt to the environmental demands by learning what to expect next, based on experience: How do action-based predictions and sensory predictions relate to each other? We explore this by implementing a self-generation oddball paradigm, where participants performed random sequences of left and right button presses to produce frequent standard and rare deviant tones. By manipulating the action–tone association as well as the likelihood of a button press over the other one, we compare ERP effects evoked by the intention to produce a specific tone, tone regularity, and both intention and regularity. We show that the N1b and Tb components of the N1 response are modulated by violations of tone regularity only. However, violations of action intention as well as of regularity elicit MMN responses, which occur similarly in all three conditions. Regardless of whether the predictions at sensory levels were based on either intention, regularity, or both, the tone deviance was further and equally well detected at hierarchically higher processing level, as reflected in similar P3a effects between conditions. We did not observe additive prediction errors when intention and regularity were violated concurrently, suggesting the two integrate despite presumably having independent generators. Even though they are often discussed as individual prediction sources in the literature, this study represents to our knowledge the first to directly compare them. Finally, these results show how, in the context of action, our brain can easily switch between top–down intention-based expectations and bottom–up regularity cues to efficiently predict future events.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3