Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning

Author:

Womelsdorf Thilo1,Watson Marcus R.2,Tiesinga Paul3

Affiliation:

1. Vanderbilt University

2. York University, Toronto, ON, Canada

3. Radboud University Nijmegen

Abstract

Abstract Flexible learning of changing reward contingencies can be realized with different strategies. A fast learning strategy involves using working memory of recently rewarded objects to guide choices. A slower learning strategy uses prediction errors to gradually update value expectations to improve choices. How the fast and slow strategies work together in scenarios with real-world stimulus complexity is not well known. Here, we aim to disentangle their relative contributions in rhesus monkeys while they learned the relevance of object features at variable attentional load. We found that learning behavior across six monkeys is consistently best predicted with a model combining (i) fast working memory and (ii) slower reinforcement learning from differently weighted positive and negative prediction errors as well as (iii) selective suppression of nonchosen feature values and (iv) a meta-learning mechanism that enhances exploration rates based on a memory trace of recent errors. The optimal model parameter settings suggest that these mechanisms cooperate differently at low and high attentional loads. Whereas working memory was essential for efficient learning at lower attentional loads, enhanced weighting of negative prediction errors and meta-learning were essential for efficient learning at higher attentional loads. Together, these findings pinpoint a canonical set of learning mechanisms and suggest how they may cooperate when subjects flexibly adjust to environments with variable real-world attentional demands.

Funder

National Institute of Mental Health

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3