Neural Underpinnings of Proactive and Preemptive Adjustments of Action Control

Author:

Asanowicz Dariusz1,Kotlewska Ilona1,Panek Bartłomiej1

Affiliation:

1. Jagiellonian University, Kraków, Poland

Abstract

Abstract This study aimed to trace the neural basis of proactive and preemptive adjustments of executive control and their effects on online processing of response conflict. In two EEG experiments, participants performed the flanker task with predictive cueing of conflict. The following questions were addressed: “Does conflict cueing improve performance?” We observed improved behavioral performance in the predictive condition, suggesting that participants proactively utilized the cues to prepare for the upcoming demands. “How is conflict processing affected by predictive cueing?” Conflict-related modulations of midfrontal N2 and theta power were smaller in the predictive than in the neutral condition. This suggests that proactive control suppressed the impact of incongruent flankers so that the conflict was reduced, and so was the involvement of online control. “Is proactive control implemented through preactivation of online control?” Conflict cueing increased midfrontal theta power also before target onset, suggesting preactivation of the control processes beforehand. “Do proactive and reactive control depend on common or unique processes?” Unlike the online control, the proactive control triggered a burst of theta power in the right hemisphere's dorsal and ventral lateral prefrontal cortices, connected with the midfrontal area via theta phase coherence. This indicates that the two control modes involve partially unique but coordinated neural processes. “Is preemptive control implemented through modulations of visual processing?” Predictive cueing modulated both the pretarget preparatory alpha desynchronization and the target selection-related posterior contralateral negativity (N2pc and sustained posterior contralateral negativity), in line with the hypothesis of preemptive tuning of sensory selection aimed at reducing the impact of conflicting stimuli.

Funder

Narodowe Centrum Nauki

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3