Adaptation to Binocular Anticorrelation Results in Increased Neural Excitability

Author:

Rideaux Reuben1,Michael Elizabeth1,Welchman Andrew E.1

Affiliation:

1. University of Cambridge

Abstract

Abstract Throughout the brain, information from individual sources converges onto higher order neurons. For example, information from the two eyes first converges in binocular neurons in area V1. Some neurons are tuned to similarities between sources of information, which makes intuitive sense in a system striving to match multiple sensory signals to a single external cause—that is, establish causal inference. However, there are also neurons that are tuned to dissimilar information. In particular, some binocular neurons respond maximally to a dark feature in one eye and a light feature in the other. Despite compelling neurophysiological and behavioral evidence supporting the existence of these neurons [Katyal, S., Vergeer, M., He, S., He, B., & Engel, S. A. Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports, 8, 1239, 2018; Kingdom, F. A. A., Jennings, B. J., & Georgeson, M. A. Adaptation to interocular difference. Journal of Vision, 18, 9, 2018; Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron, 37, 693–701, 2003; Tsao, D. Y., Conway, B. R., & Livingstone, M. S. Receptive fields of disparity-tuned simple cells in macaque V1. Neuron, 38, 103–114, 2003; Cumming, B. G., & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389, 280–283, 1997], their function has remained opaque. To determine how neural mechanisms tuned to dissimilarities support perception, here we use electroencephalography to measure human observers' steady-state visually evoked potentials in response to change in depth after prolonged viewing of anticorrelated and correlated random-dot stereograms (RDS). We find that adaptation to anticorrelated RDS results in larger steady-state visually evoked potentials, whereas adaptation to correlated RDS has no effect. These results are consistent with recent theoretical work suggesting “what not” neurons play a suppressive role in supporting stereopsis [Goncalves, N. R., & Welchman, A. E. “What not” detectors help the brain see in depth. Current Biology, 27, 1403–1412, 2017]; that is, selective adaptation of neurons tuned to binocular mismatches reduces suppression resulting in increased neural excitability.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3