Audiotactile Stimulation Can Improve Syllable Discrimination through Multisensory Integration in the Theta Frequency Band

Author:

Guilleminot Pierre1,Graef Cosima1,Butters Emilia2,Reichenbach Tobias3

Affiliation:

1. Imperial College London, United Kingdom

2. University of Cambridge, United Kingdom

3. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

Abstract Syllables are an essential building block of speech. We recently showed that tactile stimuli linked to the perceptual centers of syllables in continuous speech can improve speech comprehension. The rate of syllables lies in the theta frequency range, between 4 and 8 Hz, and the behavioral effect appears linked to multisensory integration in this frequency band. Because this neural activity may be oscillatory, we hypothesized that a behavioral effect may also occur not only while but also after this activity has been evoked or entrained through vibrotactile pulses. Here, we show that audiotactile integration regarding the perception of single syllables, both on the neural and on the behavioral level, is consistent with this hypothesis. We first stimulated participants with a series of vibrotactile pulses and then presented them with a syllable in background noise. We show that, at a delay of 200 msec after the last vibrotactile pulse, audiotactile integration still occurred in the theta band and syllable discrimination was enhanced. Moreover, the dependence of both the neural multisensory integration as well as of the behavioral discrimination on the delay of the audio signal with respect to the last tactile pulse was consistent with a damped oscillation. In addition, the multisensory gain is correlated with the syllable discrimination score. Our results therefore evidence the role of the theta band in audiotactile integration and provide evidence that these effects may involve oscillatory activity that still persists after the tactile stimulation.

Funder

Engineering and Physical Sciences Research Council

Publisher

MIT Press

Subject

Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3