Spotlight on the Left Frontal Cortex: No Evidence for Response Inhibition from Cathodal High-Definition transcranial Direct Current Stimulation over Left Inferior Frontal Gyrus or Left Dorsolateral Prefrontal Cortex

Author:

Schroeder Philipp A.1ORCID,Seewald Anna12,Svaldi Jennifer1

Affiliation:

1. University of Tübingen, Germany

2. University of Marburg, Germany

Abstract

Abstract Inhibitory control functions draw on a fronto-basal network with central cortical hubs at the right inferior frontal gyrus (IFG) and the pre-SMA. However, few neuropsychological studies investigated the role of brain regions in the left frontal cortex and some previous evidence from bilateral studies remained inconclusive. This study presents a systematic investigation with high-definition transcranial direct current stimulation (HD tDCS) in a focal 4 × 1 configuration, which was used to target the left IFG or the left dorsolateral prefrontal cortex (DLPFC) with 1-mA active or sham cathodal HD tDCS. Healthy participants were randomized into three groups. We analyzed performance in an adaptive stop-signal task to quantify inhibitory control before (baseline), during cathodal HD tDCS (on-line), and after cathodal HD tDCS (off-line) to either left IFG, left DLPFC, or sham. Results from 67 participants and Bayesian analyses indicated moderate evidence against an effect of cathodal tDCS (left DLPFC and left IFG compared with sham) regardless of timing, that is, on-line or off-line cathodal HD tDCS. The study results are examined in view of previous neuropsychological and neurostimulation studies with bilateral and unilateral cathodal tDCS in healthy and patient samples. Theoretically, our results are compatible with a right-lateralization of response inhibition functions and suggest a negligible role of the left frontal hemisphere in healthy participants, but more stimulation parameters can be still explored in the left hemisphere. In line with previous studies, right inferior frontal gyrus seems a more promising target to investigate or alleviate response inhibition with tDCS.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3