Affiliation:
1. The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
2. The Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA
3. The Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
Abstract
Abstract
Oscillatory dynamics in cortex seem to organize into traveling waves that serve a variety of functions. Recent studies show that propofol, a widely used anesthetic, dramatically alters cortical oscillations by increasing slow-delta oscillatory power and coherence. It is not known how this affects traveling waves. We compared traveling waves across the cortex of non-human primates before, during, and after propofol-induced loss of consciousness (LOC). After LOC, traveling waves in the slow-delta (∼1 Hz) range increased, grew more organized, and traveled in different directions relative to the awake state. Higher frequency (8–30 Hz) traveling waves, by contrast, decreased, lost structure, and switched to directions where the slow-delta waves were less frequent. The results suggest that LOC may be due, in part, to increases in the strength and direction of slow-delta traveling waves that, in turn, alter and disrupt traveling waves in the higher frequencies associated with cognition.
Funder
JPB Foundation
Office of Naval Research
National Institute of General Medical Sciences
National Institute of Mental Health
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献