Multiple Brain Sources Are Differentially Engaged in the Inhibition of Distinct Action Types

Author:

Hervault Mario1,Zanone Pier-Giorgio1,Buisson Jean-Christophe2,Huys Raoul1

Affiliation:

1. Centre de Recherche Cerveau et Cognition, UMR 5549 CNRS, Université Touluse 3 Paul Sabatier, Toulouse, France

2. Institut de Recherche en Informatique de Touluse, UMR 5505 CNRS, Université Touluse 3 Paul Sabatier, Toulouse, France

Abstract

Abstract Most studies contributing to identify the brain network for inhibitory control have investigated the cancelation of prepared–discrete actions, thus focusing on an isolated and short-lived chunk of human behavior. Aborting ongoing–continuous actions is an equally crucial ability but remains little explored. Although discrete and ongoing–continuous rhythmic actions are associated with partially overlapping yet largely distinct brain activations, it is unknown whether the inhibitory network operates similarly in both situations. Thus, distinguishing between action types constitutes a powerful means to investigate whether inhibition is a generic function. We, therefore, used independent component analysis (ICA) of EEG data and show that canceling a discrete action and aborting a rhythmic action rely on independent brain components. The ICA showed that a delta/theta power increase generically indexed inhibitory activity, whereas N2 and P3 ERP waves did so in an action-specific fashion. The action-specific components were generated by partially distinct brain sources, which indicates that the inhibitory network is engaged differently when canceling a prepared–discrete action versus aborting an ongoing–continuous action. In particular, increased activity was estimated in precentral gyri and posterior parts of the cingulate cortex for action canceling, whereas an enhanced activity was found in more frontal gyri and anterior parts of the cingulate cortex for action aborting. Overall, the present findings support the idea that inhibitory control is differentially implemented according to the type of action to revise.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3