Independent Vector Analysis for Source Separation Using a Mixture of Gaussians Prior

Author:

Hao Jiucang1,Lee Intae2,Lee Te-Won3,Sejnowski Terrence J.4

Affiliation:

1. Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, U.S.A.

2. Institute for Neural Computation, University of California at San Diego, CA, 92093, U.S.A.

3. Qualcomm, San Diego, CA, 92121, U.S.A.

4. Howard Hughes Medical Institute at the Salk Institute, La Jolla, CA, 92037, and Division of Biological Sciences, University of California at San Diego, CA, 92093, U.S.A.

Abstract

Convolutive mixtures of signals, which are common in acoustic environments, can be difficult to separate into their component sources. Here we present a uniform probabilistic framework to separate convolutive mixtures of acoustic signals using independent vector analysis (IVA), which is based on a joint distribution for the frequency components originating from the same source and is capable of preventing permutation disorder. Different gaussian mixture models (GMM) served as source priors, in contrast to the original IVA model, where all sources were modeled by identical multivariate Laplacian distributions. This flexible source prior enabled the IVA model to separate different type of signals. Three classes of models were derived and tested: noiseless IVA, online IVA, and noisy IVA. In the IVA model without sensor noise, the unmixing matrices were efficiently estimated by the expectation maximization (EM) algorithm. An online EM algorithm was derived for the online IVA algorithm to track the movement of the sources and separate them under nonstationary conditions. The noisy IVA model included the sensor noise and combined denoising with separation. An EM algorithm was developed that found the model parameters and separated the sources simultaneously. These algorithms were applied to separate mixtures of speech and music. Performance as measured by the signal-to-interference ratio (SIR) was substantial for all three models.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3