Gecko: A Continuous 2D World for Ecological Modeling

Author:

Booth Ginger1

Affiliation:

1. Center for Computational Ecology, Yale Institute for Biospheric Studies, P. O. Box 208104, New Haven, CT 06520-8104. ,

Abstract

An individual-based simulation system, named Gecko, is presented for modeling multiple species at multiple trophic levels, on a spatially explicit, continuous two-dimensional landscape. Biologically motivated rules are specified at an individual level, and resulting behaviors are observed at an ecosystem level. Individuals are represented by circles with free range on a resource-producing plane. These circles grow allometrically with biomass of fixed resources. Resource acquisition behaviors include competition by area overlap for producers, and movement based on perception and intent. Individual-level energetics are explicitly modeled with inefficient assimilation, resource transformation, and allometrically specified metabolic costs. Individual growth and reproduction requires a history of successful resource acquisition. Terrestrial producer, herbivore, and carnivore species classes are included, extensible to further classes. A grassland food chain model of “plants,” “grasshoppers,” and “spiders” is used to demonstrate ecosystem-level results of given individual-level behaviors. Ecosystem-level behaviors include a trophic cascade of indirect carnivore-producer interaction effects; stable persistence of all populations; a near-realistic biomass pyramid; and spatial competition and coexistence of multiple producer species. Initial Gecko results show promise for application in both theoretical and natural ecosystem modeling.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3