Evolving 3D Morphology and Behavior by Competition

Author:

Sims Karl1

Affiliation:

1. Thinking Machines Corporation, 245 First Street, Cambridge MA 02142.

Abstract

This article describes a system for the evolution and coevolution of virtual creatures that compete in physically simulated three-dimensional worlds. Pairs of individuals enter one-on-one contests in which they contend to gain control of a common resource. The winners receive higher relative fitness scores allowing them to survive and reproduce. Realistic dynamics simulation including gravity, collisions, and friction, restricts the actions to physically plausible behaviors. The morphology of these creatures and the neural systems for controlling their muscle forces are both genetically determined, and the morphology and behavior can adapt to each other as they evolve simultaneously. The genotypes are structured as directed graphs of nodes and connections, and they can efficiently but flexibly describe instructions for the development of creatures' bodies and control systems with repeating or recursive components. When simulated evolutions are performed with populations of competing creatures, interesting and diverse strategies and counterstrategies emerge.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the costs of phenotypic plasticity for evolvable digital organisms;Scientific Reports;2024-01-02

2. Emergence of tool construction and tool use through hierarchical reinforcement learning;Artificial Intelligence in the Age of Neural Networks and Brain Computing;2024

3. A social path to human-like artificial intelligence;Nature Machine Intelligence;2023-11-17

4. Adversarial Evolutionary Learning with Distributed Spatial Coevolution;Handbook of Evolutionary Machine Learning;2023-11-02

5. Fundamentals of Evolutionary Machine Learning;Handbook of Evolutionary Machine Learning;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3