Calibration of Constraint Promotion Does Not Help with Learning Variation in Stochastic Optimality Theory

Author:

Magri Giorgio1,Storme Benjamin1

Affiliation:

1. SFL UMR 7023 (UPL, CNRS, University of Paris 8), 61 rue Pouchet, 75017 Paris, France,

Abstract

The Calibrated Error-Driven Ranking Algorithm (CEDRA; Magri 2012 ) is shown to fail on two test cases of phonologically conditioned variation from Boersma and Hayes 2001 . The failure of the CEDRA raises a serious unsolved challenge for learnability research in stochastic Optimality Theory, because the CEDRA itself was proposed to repair a learnability problem ( Pater 2008 ) encountered by the original Gradual Learning Algorithm. This result is supported by both simulation results and a detailed analysis whereby a few constraints and a few candidates at a time are recursively “peeled off” until we are left with a “core” small enough that the behavior of the learner is easy to interpret.

Publisher

MIT Press - Journals

Subject

Linguistics and Language,Language and Linguistics

Reference16 articles.

1. Deriving Variation from Grammar

2. Anttila, Arto. 1997b. Variation in Finnish phonology and morphology. Doctoral dissertation, Stanford University, Stanford, CA.

3. Boersma, Paul. 1998. Functional phonology. Doctoral dissertation, University of Amsterdam. The Hague: Holland Academic Graphics.

4. Some Correct Error-Driven Versions of the Constraint Demotion Algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3