Time Domain Passivity Control for Position-Position Teleoperation Architectures

Author:

Artigas Jordi1,Ryu Jee-Hwan2,Preusche Carsten1

Affiliation:

1. DLR, German Aerospace Center Institute of Robotics and Mechatronics Oberpfaffenhofen, Germany

2. School of Mechanical Engineering Korea University of Technology and Education Cheoan-city, 330-708 Republic of Korea

Abstract

This article presents a method for passivating the communication channel of a symmetric position-position teleoperation architecture on the time domain. The time domain passivity control approach has recently gained appeal in the context of timedelayed teleoperation because passivity is not established as a design constraint, which often forces conservative rules, but rather as a property which the system must preserve during operation. Since passivity is a network property, the first design rule within this framework is to represent consistent and comprehensible circuit (i.e., network) representations of the mechanical teleoperation system. In particular, the energetic behavior of these networks is interesting because it allows straightforward conclusions about system stability. By means of so-called passivity observers (PO) and passivity controllers (PC) (Hannaford & Ryu, 2001), the energetic response of a delayed communication channel is captured and modulated over time so that the network in question never becomes nonpassive. The case analyzed in this paper tackles a communication channel that conveys position data back and forth. This type of channel does not offer intuitive network representation since only flows are actually being transmitted. Although energy clearly travels from one side to the other, port power identification, as defined by the correlated pair flow and effort, is not evident. This work first investigates how this kind of channel can be represented by means of circuit networks even with the lack of physical effort being transmitted through the channel, and identifies which networks are susceptible to become nonpassive due to the channel characteristics (i.e., time delay, discretization or package loss). Once achieved, a distributed control structure is presented based on a PC series that keeps the system at the verge of passivity (and therefore stability) independent from the channel properties. The results obtained by the simulation and by experiment sustain the presented approach.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Actuator Capabilities Aware Limitation for TDPA Passivity Controller Action;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

2. Power-Based Velocity-Domain Variable Structure Passivity Signature Control for Physical Human-(Tele)Robot Interaction;IEEE Transactions on Robotics;2023-02

3. Local Autonomy-Based Haptic-Robot Interaction With Dual-Proxy Model;IEEE Transactions on Robotics;2022-10

4. Adaptive Wave Reconstruction Through Regulated-BMFLC for Transparency-Enhanced Telerobotics Over Delayed Networks;IEEE Transactions on Robotics;2022-10

5. Energy-guarded Loop-control Architecture;2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3