Haptic Communication to Support Biopsy Procedures Learning in Virtual Environments

Author:

Chellali Amine1,Dumas Cedric2,Milleville-Pennel Isabelle3

Affiliation:

1. Robotics Research Group, IRCCyN, Ecole des Mines de Nantes and Cambridge Health Alliance, Department of Surgery Research Group, Cambridge, MA 02139 USA

2. Robotics Research Group, IRCCyN, Ecole des Mines de Nantes and Biomedical Imaging Team CSIRO

3. PsyCoTech Research Group, IRCCyN-CNRS

Abstract

In interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices’ performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3