Modifying Perceived Size of a Handled Object through Hand Image Deformation

Author:

Ban Yuki1,Narumi Takuji1,Tanikawa Tomohiro1,Hirose Michitaka1

Affiliation:

1. The University of Tokyo

Abstract

In this study, we aim to construct a perception-based shape display system to provide users with the sensation of touching virtual objects of varying shapes using only a simple mechanism. Thus far, we have proved that identified curved surface shapes or edge angles can be modified by displacing the visual representation of the user's hand. However, using this method, we cannot emulate multifinger touch, because of spatial unconformity. To solve this problem, we focus on modifying the identification of shapes using two fingers by deforming the visual representation of the user's hand. We devised a video see-through system that enables us to change the perceived shape of an object that a user is touching visually. The visual representation of the user's hand is deformed as if the user were handling a visual object; however, the user is actually handling an object of a different shape. Using this system, we conducted two experiments to investigate the effects of visuo-haptic interaction and evaluate its effectiveness. One is an investigation on the modification of size perception to confirm that the fingers did not stroke the shape but only touched it statically. The other is an investigation on the modification of shape perception for confirming that the fingers dynamically stroked the surface of the shape. The results of these experiments show that the perceived sizes of objects handled using a thumb and other finger(s) could be modified if the difference between the size of physical and visual stimuli was in the −40% to 35% range. In addition, we found that the algorithm can create an effect of shape perception modification when users stroke the shape with multiple fingers.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using the Visual Language of Comics to Alter Sensations in Augmented Reality;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

2. Exploring virtual reality object perception following sensory-motor interactions with different visuo-haptic collider properties;Scientific Reports;2024-05-01

3. Expansion of Detection Thresholds for Hand Redirection using Noisy Tendon Electrical Stimulation;2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2023-10-16

4. Influence of hand representation on a grasping task in augmented reality;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

5. Virtual Reality System to Experience Grasp of Others’ Hands with a Different Range of Motion;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3